Fázová premena: Rozdiel medzi revíziami

Smazaný obsah Přidaný obsah
Bez shrnutí editace
Bez shrnutí editace
Riadok 33:
Roztopený ľad, teda voda, sa vyznačuje oveľa vyššou symetriou. Molekuly vody nie sú usporiadané do mriežky, pohybujú sa náhodne všetkými smermi. Ak si však zoberieme fyzikálne merateľný objem kvapaliny, zistíme, že tento objem je vysoko symetrický. Ak posunieme (nekonečne rozpriestranenú) kvapalinu ktorýmkoľvek smerom, nič sa nezmení. Ak ju otočíme o ľubovoľný uhol, nič sa nezmení. Kvapalina sa vyznačuje spojitou rotačnou aj translačnou symetriou. Je teda viac symetrická než kryštál, ale menej usporiadaná, pretože symetria kvapaliny je daná práve tým, že v makroskopickom meradle je vysoko neusporiadaná.
 
Fázové prechody prvého druhu sú tie, pri ktorých dochádza ku kvalitatívnej zmene fázy látky: z nesymetrickej na viac symetrickú. Je intuitívne zrejmé, že kvalitatívna zmena musí byť popísaná nespojitými funkciami. Usporiadanosť systému opisuje entropia. Tá sa pri fázovom prechode prvého druhu mení nespojite. Neskôr vysvetlíme, že funkcia, na základe ktorej opisujeme fázový prechod, je chemický potenciál. Klasická klasifikácia fázových prechodov pochádza od Paula Ehrenfesta. Podľa nej prechody prvého druhu sú tie, pri ktorých charakteristiky získané z chemického potenciálu sú nespojité. Postupne vysvetlíme, že klasická Ehrenfestova klasifikácia fázových prechodov nie je adekvátna.
 
Fázové prechody druhého druhu sú tzv. spojité prechody. Dobrým príkladom je vyparovanie vody. Rovnako, ako voda, aj para je vysoko symetrická. Presnejšie, grupa symetrií pary a vody je presne tá istá: voda aj para sa vyznačujú spojitou translačnou aj rotačnou symetriou. Kvapalina sa totiž vyparuje pri každej teplote. Ak teda uvažujeme izolovaný systém, v ktorom je kvapalina, je tam automaticky aj jej para. Pri adiabatickom zvyšovaní teploty sa zvyšuje koncentrácia pary, ale oobeobe fázy, kvapalná aj plynná, sú v dynamickej rovnováhe. Kvapalina postupne, spojite, prechádza do plynnej fázy. Pre fázové prechody 2. druhu je charakteristické, že obe fázy sa nelíšia kvalitatívne, len kvantitatívne. Napr. voda a para sa líšia koncentráciou častíc a intenzitou interakcie (častice plynnej fázy interagujú slabšie), ale nie stupňom symetrie. Pre fázové prechody 2. druhu existuje tzv. kritický bod, v ktorom sa obidve fázy stávajú nerozlíšiteľné a sústava sa stáva homogénnou. V skutočnosti proces vyparovania nemusí prejsť kritickým bodom. V bode fázového prechodu vtedy koexistujú (v dynamickej rovnováhe) dve rozlíšiteľné fázy a jedná so o prechod 1. druhu. Ak sa ale sústava dostane do kritického bodu, rozdiel hustôt oboch fáz sa stáva nulový, fázy sú nerozlíšiteľné a jedná sa o spojitý prechod 2. druhu. Zaujímavým rysom prechodov 2. druhu je divergencia niektorých veličín, t.j. tieto veličiny nadobúdajú nekonečne veľké hodnoty. Príkladom takej veličiny je korelačná dĺžka (definíciu a podrobnejšie vysvetlenie viď nižšie). Korelačná dĺžka je, zhruba povedané, vzdialenosť, na ktorú sa častice ovplyvňujú. Ďaleko od kritického bodu je táto vzdialenosť veľmi malá, rovná sa rádovo vzdialenosti medzi molekulami, a teda častice vplývajú len na svoje najbližšie okolie. V kritickom bode ale korelačná dĺžka rastie do nekonečna a každá častica interaguje s celým systémom. Preto hovoríme o kooperatívnom jave v zmysle, ako bol vysvetlený vyššie. Vlastnosťami systémov v blízkosti kritického bodu sa zaoberá kritická dynamika.
 
Ďalšou zaujímavou a dôležitou vlastnosťou prechodov druhého druhu je ich univerzalita. Ako vysvetlíme, kritické správanie sústavy závisí len od dimenzie sústavy a dimenzionality tzv. parametra usporiadania.
 
Iným významným príkladom prechodu 2. druhu je prechod neferomagnetickej fázy na feromagnetickú. Za neprítomnosti vonkajšieho magnetického poľa hovoríme o spontánnej magnetizácii. Kritický bod sa tu nazáva aj Curieho bod. Nad Curieho bodom sú magnetické dipólové momenty orientované náhodne, chaoticky, bez preferovaného smeru. Pri ochladení feromagnetika pod Curieho bod sa momenty spontánne zorientujú do jediného smeru. Hovoríme o spontánnom narušení symetrie, pretože nemagnetická fáza má vyššiu symetriu (keď sú všetky smery ekvivalentné, a teda magnetikum je izotropné), než magnetická (s preferovaným smerom spontánnej magnetizácie).
 
 
 
== Rovnováha fáz a fázové prechody ==
 
Skúmajme najprv podmienky rovnováhy dvoch fáz. Termodynamické vlastnosti sústavy sú popísané tzv. termodynamickými potenciálmi, čo sú stavové funkcie závislé od niekoľkých stavových veličín. Ostatné stavové veličiny z potenciálov získame parciálnym derivovaním. Základné termodynamické potenciály sú vnútorná energia, entalpia, Gibbsova a Helmholtzova voľná energia. Tieto potenciály sú spojené Legendreovou transformáciou. Pre naše účely je zaujímavá Gibbsova energia, ktorej úplný diferenciál je
 
<math>{\rm d}G\;\;=\;\;-S{\rm d}T\;+\;x{\rm d}X\;+\;\mu{\rm d}N</math>
 
<math>S</math> je entropia sústavy, <math>T</math> teplota, <math>x</math> zovšeobecnená súradnica, <math>X</math> zovšeobecnená sila, <math>\mu</math> chemický potenciál a <math>N</math> počet častíc sústavy. Chemický potenciál predstavuje Gibbsovu energiu pripadajúcu na jednu časticu. Zovšeobecnená súradnica je napr. objem fázy, alebo magnetizácia feromagnetika, zovšeobecnená sila napr. tlak alebo vonkajšie magnetické pole. Termodynamická rovnováha dvoch fáz zahŕňa nasledujúce čiastkové rovnováhy: