Redaktor:Peterzet/pieskovisko: Rozdiel medzi revíziami

Smazaný obsah Přidaný obsah
Peterzet (diskusia | príspevky)
Peterzet (diskusia | príspevky)
Riadok 34:
important and is described by empirical laws.
|-
| firstokolo decades of the 19th century1800 || [[Humphry Davy]] observedpozoroval, thatže of thezo 40 vtedy známych [[chemical element|prvkov]]s known at the time, 26 hadkovové [[metal]]licvlastnosti properties(lesk, suchrozťažnosť, asvysoká [[lustreElektrická (mineralogy)vodivosť|lustreelektrická]], a [[ductilitytepelná vodivosť]] and high electrical and thermal conductivity).<ref name="goodstein">{{cite journal|last=Goodstein|first=David|author2=Goodstein, Judith |title=Richard Feynman and the History of Superconductivity|journal=Physics in Perspective|year=2000|volume=2|issue=1|url=http://web.njit.edu/~tyson/supercon_papers/Feynman_Superconductivity_History.pdf|accessdate=7 April 2012|doi=10.1007/s000160050035|pages=30|bibcode = 2000PhP.....2...30G }}</ref> This indicated that the atoms in [[John Dalton|Dalton]]'s [[atomic theory]] were not indivisible as Dalton claimed, but had inner structure. Davy further claimed that elements that were then believed to be gases, such as [[nitrogen]] and [[hydrogen]] could be liquefied under the right conditions and would then behave as metals.<ref name="davy-1839">{{cite book|last=Davy|first=John (ed.)|title=The collected works of Sir Humphry Davy: Vol. II|year=1839|publisher=Smith Elder & Co., Cornhill|url=http://books.google.com/books?id=6WNKAAAAYAAJ&pg=PA22}}</ref>{{#tag:ref|Both hydrogen and nitrogen have since been liquified, however ordinary liquid nitrogen and hydrogen do not possess metallic properties. Physicists [[Eugene Wigner]] and [[Hillard Bell Huntington]] predicted in 1935<ref name=metallic-hydrogen>{{cite journal|last=Silvera|first=Isaac F.|author2=Cole, John W. |title=Metallic Hydrogen: The Most Powerful Rocket Fuel Yet to Exist|journal=Journal of Physics|year=2010|volume=215|doi=10.1088/1742-6596/215/1/012194|bibcode = 2010JPhCS.215a2194S|pages=012194 }}</ref> that a state [[metallic hydrogen]] exists at sufficiently high pressures (over 25 [[Pascal (unit)|GPa]]), however this has not yet been observed.|group = notes}}
|-
| 1820 || Klasifikácia kryštálových symetrii (Brilliouin) ???????
|-
| 1823|| [[Michael Faraday]], then an assistant in Davy's lab, successfully liquefied [[chlorine]] and went on to liquefy all known gaseous elements, with the exception of [[nitrogen]], [[hydrogen]] and [[oxygen]].<ref name="goodstein" />
Riadok 42:
| a || Magnetism as a property of matter has been known since pre-historic times.<ref name="mattis-magnetism-2006">{{cite book|last=Mattis|first=Daniel|title=The Theory of Magnetism Made Simple|year=2006|publisher=World Scientific|isbn=9812386718}}</ref> However, the first modern studies of magnetism only started with the development of [[electrodynamics]] by Faraday, [[James Clark Maxwell|Maxwell]] and others in the nineteenth century, which included the classification of materials as [[ferromagnetic]], [[paramagnetic]] and [[diamagnetic]] based on their response to magnetization.<ref name="Chatterjee-2004-ferromagnetism">{{cite journal|last=Chatterjee|first=Sabyasachi|title=Heisenberg and Ferromagnetism|journal=Resonance|date=August 2004|volume=9|issue=8|doi=10.1007/BF02837578|url=http://www.ias.ac.in/resonance/Aug2004/pdf/Aug2004p57-66.pdf|accessdate=13 June 2012|pages=57}}</ref>
|-
| 1853 || 1853 Wiedemannov Franzov zákon (tepelná a elektrická vodivosť)
|-
| 1869 || 1869, [[People of Ireland|Irish]] chemist [[Thomas Andrews (scientist)|Thomas Andrews]] studied the [[phase transition]] from a liquid to a gas and coined the s phases,<ref name="thomasandrews">{{cite journal|last=Rowlinson|first=J. S.|title=Thomas Andrews and the Critical Point|journal=Nature|year=1969|volume=224|issue=8|doi=10.1038/224541a0|pages=541|bibcode = 1969Natur.224..541R }}</ref> and [[Netherlands|Dutch]] physicist [[Johannes van der Waals]] supplied the theoretical framework which allowed the prediction of critical behavior based on measurements at much higher temperatures.<ref name="atkins">{{cite book|last=Atkins|first=Peter|last2=de Paula|first2=Julio|title=Elements of Physical Chemistry|year=2009|publisher=Oxford University Press|isbn=978-1-4292-1813-9}}</ref>
|-
| 1879 || 1879 Hallov jav, [[Edwin Herbert Hall]] workingpozoroval atvznik thetranzverzného [[Johnselektrického Hopkinsnapätia University]]pri discoveredpôsobení themagnetického developmentpoľa ofna aprúd, voltageefekt acrossnazývaný conductorsdnes transverse[[Hallov to an electric current in the conductor and magnetic field perpendicular to the currentjav]].<ref>{{cite journal|title=On a New Action of the Magnet on Electric Currents|author=Hall, Edwin |journal=American Journal of Mathematics|volume=2|year=1879|pages=287–92|url=http://www.stenomuseet.dk/skoletj/elmag/kilde9.html|accessdate=2008-02-28|doi=10.2307/2369245|issue=3|jstor=2369245}}</ref> ThisSprávne phenomenonteoretické arisingvysvetlenie duejavu tobolo thepodané nature ofpo charge carriers in the conductor came to be known as theobjave [[Hall effectelektrón]], but it was not properly explained at the time, since the electron was experimentally discovered 18 years later<nowiki/>u.
|-
| 1897 || 1897[[Joseph objavJohn elektrónu,Thomson|Thomson]] Thompsonobjavuje elektrón.
|-
| 1900|| 1900 Drude (a Lorentz) teória kovov na báze voľného plynu elektrónov. [[Paul Drude]] proposed the first theoretical model for a [[classical mechanics|classical]] [[electron]] moving through a metallic solid.<ref name="marvincohen2008" /> Drude's model described properties of metals in terms of a gas of free electrons, and was the first microscopic model to explain empirical observations such as the [[Wiedemannov–Franzov zákon]].<ref name="Kittel 1996">{{cite book|last=Kittel|first=Charles|title=Introduction to Solid State Physics|year=1996|publisher=John Wiley & Sons|isbn=0-471-11181-3}}</ref><ref name="Hoddeson-1992">{{cite book|last=Hoddeson|first=Lillian|title=Out of the Crystal Maze: Chapters from The History of Solid State Physics|year=1992|publisher=Oxford University Press|isbn=9780195053296|url=http://books.google.com/books?id=WCpPPHhMdRcC&pg=PA29}}</ref> However, despite the success of Drude's free electron model, it had one notable problem, in that it was unable to correctly explain the electronic contribution to the [[specific heat]] of metals, as well as the [[temperature]] dependence of resistivity at low temperatures.<ref name="Csurgay-drude">{{cite book|last=Csurgay|first=A.|title=The free electron model of metals|publisher=Pázmány Péter Catholic University|url=http://digitus.itk.ppke.hu/~acsurgay/BION_PHYS_ESSZEK_REF/Drude_Sommerfeld/FreeElectronModel_Metals.pdf}}</ref>