Hybnosť: Rozdiel medzi revíziami

Pridaných 607 bajtov ,  pred 2 rokmi
pridanie uvolnenho tepla pri nepruznej zrazke
(pridanie vypoctu nepruznej zrazky)
(pridanie uvolnenho tepla pri nepruznej zrazke)
Zákon zachovania hybnosti je užitočný na výpočet výsledných rýchlostí telies po ich vzájomnej zrážke. Pri tzv. pružnej (elastickej) zrážke dvoch telies sa okrem hybnosti zachováva aj ich kinetická energia, pri nepružnej zrážky sa zrážajúce telesá zrazia do jedného a pokračujú už ako jeden objekt.
 
=== Nepružná zrážka ===
Nech <math>m_1</math> a <math>m_2</math> sú hmotnosti dvoch telies pohybujúcich sa po tej istej priamke a <math>v_1</math> a <math>v_2</math> ich rýchlosti. (Všetky rýchlosti sú kladné, ak smerujú v kladom smere x-ovej osi, inak sú zaporné). V prípade nepružnej zrážky vytvoria telesá <math>m_1</math> a <math>m_2</math> jedno teleso s hmotnosťou <math>m_1+m_2</math> a výslednou rýchlosťou <math>u</math>. Tú je možné vypočítať zo zákona zachovania hybnosti:
<math> m_1v_1+m_2v_2 = (m_1+m_2)u </math>
 
<math> m_1v_1+m_2v_2 = (m_1+m_2)u </math>
 
a teda
 
<math>u =\frac{ m_1v_1+m_2v_2 }{m_1+m_2} </math>.
<br />Príkladom nepružnej zrážky je napríklad zrážka náboja s telesom, v ktorom náboj uviazne. Mechanická energia sa v tomto prípade vo všeobecnosti nezachováva:
<br />
 
<math>\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2-\frac{1}{2}(m_1+m_2)u^2=
\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2-\frac{1}{2}(m_1+m_2)\frac{(m_1v_1+m_2v_2)^2}{(m_1+m_2)^2}=
\frac{1}{2}\frac{m_1(m_1+m_2)v_1^2+m_2(m_1+m_2)v_2^2-(m_1v_1+m_2v_2)^2}{m_1+m_2}
=\frac{1}{2}\frac{m_1m_2}{m_1+m_2}(v_1-v_2)^2</math>
 
Táto kinetická energia sa typicky uvoľní ako teplo pri zrážke.
 
=== Pružná zrážka ===
[[Kategória:Dynamika]]
[[Kategória:Fyzikálne veličiny]]
23

úprav