Neutrónová hviezda: Rozdiel medzi revíziami

Odobraných 3 403 bajtov ,  pred 1 rokom
Skrátenie úvodu, jadrové cestoviny.
(Presnejšie som opísal gravitačné pole (predovšetkým som zdôraznil, prečo by malo teleso na neutrónovej hviezde takú veľkú hmotnosť). Pridanie poznámky.)
(Skrátenie úvodu, jadrové cestoviny.)
{{Pracuje sa}}
[[Súbor:An isolated neutron star in the Small Magellanic Cloud.jpg|náhľad|Izolovaná neutrónová hviezda (modrá škvrna v strede červeného prstenca) v Malom [[Magellanove mraky|Magellanovom mračne.]]]]
'''Neutrónová hviezda''' je vesmírny objekt s extrémnou hustotou, ktorý je výsledkom výbuchu supernovy typu '''II''', v niektorých prípadoch aj typu '''Ic''' či '''Ib.''' Ide o degenerovaný pozostatok hviezdneho jadra, ktorý je zložený z neutrónov (subatomárnych častíc s neutrálnym nábojom) a predstavuje záverečné štádium vývoja hmotných hviezd.
'''Neutrónová hviezda''' je vesmírny objekt s extrémnou hustotou, ktorý je výsledkom výbuchu supernovy typu '''II''', v niektorých prípadoch aj typu '''Ic''' či '''Ib.''' Ide o degenerovaný pozostatok hviezdneho jadra, ktorý je zložený z neutrónov (subatomárnych častíc s neutrálnym nábojom) a predstavuje záverečné štádium vývoja hmotných hviezd. Typické neutrónové hviezdy dosahujú polomer približne 10 kilometrov a hmotnosť ekvivalentnú 1,4 násobku Slnka- ide o minimálnu hmotnosť materskej hviezdy, kde pri výbuchu supernovy gravitácia prekoná tlaky elektrónovej degenerácie a spôsobí gravitačné zrútenie bieleho trpaslíka v priebehu ani nie jednej sekundy. Spodná hranica hmotnosti neutrónových hviezd nesie meno fyzika Subrahmanyana Chandrasekhara, ktorý preukázal, že biely trpaslík pri explodovaní hviezdy 1,4 násobku slnečnej hmotnosti nemôže ostať gravitačne stabilný. So svojím objavom priniesol matematický podklad pre myšlienku neutrónových hviezd a čiernych dier, ktoré sa podarilo detailnejšie preskúmať v minulých rokoch 20. a 21. storočia. Pre neutrónové hviezdy existuje aj horná hranica ich hmotnosti, kde by gravitačný kolaps ďalej pokračoval do vzniku objektu s vysokou koncentráciou hmoty a silnou gravitáciou-čiernej diery. Horná hranica ich hmotnosti sa zvyčajne pohybuje okolo 2,3-2,5 násobku hmotnosti Slnka (''Oppenheimerova-Volkoffova medz''a), hoci ešte žiadne súčasné a priame pozorovania blízkej či vzdialenej neutrónovej hviezdy nepreukázali hodnoty v tomto prípade. Hmotnosť prevažnej väčšiny neutrónových hviezd v pozorovateľnom vesmíre mala hmotnosť 2,12 Sĺnk, pričom doteraz najťažšia objavená neutrónová hviezda- ''J0740+6620,'' dosahuje podľa pozorovaní 2,14 násobok slnečnej hmotnosti. [[Súbor:Crab Nebula pulsar x-ray.jpg|náhľad|Rýchlo rotujúca neutrónová hviezda (pulzar) v srdci [[Krabia hmlovina|Krabej hmloviny]] (''biela bodka blízko stredu''). Objavenie pulzaru J. Cockeom, D. Taylorom a M. Disneyom po niekoľkých rokoch prinieslo odpoveď na otázku, prečo Krabia hmlovina stále tak jasne žiari.]]
Prostredníctvom vyžarovania neutrín a fotónov v priebehu niekoľkých rokov teplota neutrónovej hviezdy klesá na teplotu, kde začne napájanie röntgenovej emisie- väčšina pozorovaných neutrónových hviezd žiari práve v tejto oblasti elektromagnetického spektra. V pozorovateľnom vesmíre sa nachádzajú aj (mladé) neutrónové hviezdy, ktoré dominujú v emitovaní optického žiarenia (žiarenie, ktoré zahrňuje oblasti ultrafialového žiarenia-UV, infračerveného žiarenia- IR a viditeľného svetla- VIS<ref>{{Citácia elektronického dokumentu|titul=What is optical radiation?|url=https://www.bfs.de/EN/topics/opt/introduction/introduction.html|vydavateľ=Federal Office for Radiation Protection|dátum prístupu=2021-07-11|jazyk=en}}</ref>). Neutrónové hviezdy, napr. pulzary, emitujú pravidelné pulzy v rádiových vlnách- prvá objavená neutrónová hviezda, pulzar PSR B1919+21 zachytený rádioteleskopom v observatóriu MRAO (Milliard Radio Astronomy Observatory) na pôde univerzity Cambridge, bol spozorovaní prostredníctvom emitovania rádiových pulzov, opakujúcich sa v 1,3 pravidelných sekundových intervaloch.
 
V našej galaxii- Mliečnej ceste sa podľa dnešných odhadov nachádza až jedna miliarda neutrónových hviezd a približne 5% z nich tvoria binárne systémy- systém dvoch astronomických objektov (zvyčajne hviezdy či planéty), ktoré obiehajú okolo ich spoločného ťažiska. Medzi základné binárne systémy, kde sa vyskytujú neutrónové hviezdy patria '''LMXBs''' (Low Mass X-ray Binnaries- v preklade ''Röntgenové binárne systémy s nízkou hmotnosťou''), '''IMXBs''' (Intermediate-mass X-ray binary- v preklade ''Medzihmotné röntgenové binárne systémy'') a HMXBs (High Mass X-ray Binnaries- ''Vysoko hmotné röntgenové binárne systémy''). V týchto binárnych systémoch sa ako hlavná zložka, resp. kompaktný objekt nachádza neutrónová hviezda alebo čierna diera a druhá zložka pozostáva z plazmovej hviezdy (väčšinou) strednej hmotnosti (červený obor), bieleho trpaslíka alebo aj druhej neutrónovej hviezdy (pre viac informácií pozri "''Binárne systémy"'').
 
Gravitačné pole neutrónovej hviezdy je rádovo 2000 krát silnejšie ako má Zem. Pri takom silnom gravitačnom poli nastane podľa teórii relativity gravitačné šošovkovanie. Silné gravitačné pole ohýba fotóny emitované neutrónovou hviezdou, ktoré môžu byť zachytené na jej obežnej dráhe, v dôsledku čoho sa zviditeľní celý povrch neutrónovej hviezdy z pozorovaného bodu. Magnetické pole neutrónových hviezd vie dosiahnuť hodnoty 10<sup>8</sup>-10<sup>11</sup> T- neutrónové hviezdy s takýmto neobyčajne silným magnetickým polom sú známe pod názvom magnetary. Stali sa prijímanou hypotézou na vysvetlenie Mäkkých gama opakovačov (SGRs-Soft Gama Repeaters) a mladých, izolovaných neutrónových hviezd- [[Anomálny röntgenový pulzar|anomálnych röntgenových pulzarov]] (AXP- Anomalous X-ray pulsars).
 
== História objavov ==
[[Súbor:1997NeutronStar.jpg|náhľad|Prvé priame pozorovanie neutrónovej hviezdy ([[RX J1856.5−3754]]) vo viditeľnom svetle.]]V roku 1930 teoretický fyzik indického pôvodu Subrahmanyan Chandrasekhar počas svojej dlhej cesty z Indie do Anglicka zistil, že ak má hviezda, ktorá už vyčerpala svoje zásoby prvkov, 1.4 násobok slnečnej hmotnosti, pre bieleho trpaslíka neexistuje gravitačná rovnováha, pretože tlak vyvíjaný gravitáciou pri výbuchu supernovy prekoná degenerativný tlak, ktorý vzniká degenerovanímzdegenerovaním elektrónov vo vnútri bieleho trpaslíka (pre viac informácií pozri ''"Vznik"''). To, čo sa stane, ak sa biely trpaslík gravitačne zrúti, predstavoval pre vedeckú komunitu ťažko stráviteľný problém- a keďže sa ani o takýchto objektoch v tej dobe neuvažovalo, jeho teória bola zamietnutá. Chandrasekhar síce sám nevysvetlil, aký objekt presne vznikne po zrútení trpaslíka, ale priniesol matematický základ pre samú myšlienku čiernych dier a neutrónových hviezd. O štyri roky neskôr dvaja astronómovia- [[Walter Baade]] a [[Fritz Zwicky]]- usúdili, že zrútenie hmotných hviezd vo forme výbuchu supernovy je spôsobený energiou gravitácie, ktorá sa pri zrútení jadra impulzívne uvoľní. Jadro hviezdy je po zrútení stlačené do veľkosti 10 kilometrov a hustotou, ktorá by sa dala porovnať s hustou atómového jadra. Navrhli, že tento objekt by mal byť praktický tvorený neutrónmi- čo bolo len dva roky po objave neutrónu, ktorý sa podarilo objaviť James Chadwickovi. Na konci 30. rokov 20. storočia boli fyzikálne zákonitosti neutrónových hviezd niekoľko krát potvrdené, no ich existencia ostala až do roku 1968- rok po objavení prvej neutrónovej hviezdy PSR B1919+21- len čisto hypotetická.
 
O štyri roky neskôr dvaja astronómovia- [[Walter Baade]] a [[Fritz Zwicky]]- usúdili, že zrútenie hmotných hviezd vo forme výbuchu supernovy je spôsobený energiou gravitácie, ktorá sa pri zrútení jadra impulzívne uvoľní. Jadro hviezdy je po zrútení stlačené do veľkosti 10 kilometrov a hustotou, ktorá by sa dala porovnať s hustou atómového jadra. Navrhli, že tento objekt by mal byť praktický tvorený neutrónmi- čo bolo len dva roky po objave neutrónu, ktorý sa podarilo objaviť James Chadwickovi. Na konci 30. rokov 20. storočia boli fyzikálne zákonitosti neutrónových hviezd niekoľko krát potvrdené, no ich existencia ostala až do roku 1968- rok po objavení prvej neutrónovej hviezdy PSR B1919+21- len čisto hypotetická.
 
V roku 1967 robili Jocelyn Bell Burnellová a vedúci jej práce Antony Hewish na pôde univerzity Cambridge preskúmavanie nočnej oblohy pomocou nového rádioteleskopu. Podarilo sa im zachytiť nezvyčajný signál, ktorý bol vysielaný v pravidelných 1,3 sekundových intervaloch prostredníctvom rádiových vĺn. Po objave prvej, vzdialenej a izolovanej neutrónovej hviezdy nasledovali ďalšie objavy. Povaha týchto zdrojov, ktoré sa medzičasom začali nazývať ako pulzary, ostala až do roku 1968 nejasná. Vtedy vykonávali John Cocke, Don Taylor a Michael Disney pozorovania hviezdy v strede Krabej hmloviny. Zistili, že blikala až 30-krát za sekundu. Prvý krát sa tak podarilo preukázať, že pulzary, sú rotujúce neutrónové hviezdy, kde odstredivá sila formuje tvar ich emitovaného žiarenia.
== Vznik ==
[[Súbor:Neutronstarsimple.png|náhľad|Zjednodušený proces vzniku neutrónovej hviezdy. '''Horný riadok''' – vonkajšie vrstvy masívnej hviezdy sa začnú rútiť na vnútorné jadro, čím vzniká rázová vlna. '''Stredný riadok''' –  hmota klesajúcich vrstiev sa stláča, čo spôsobí výbuch neutrín a zahreje plyn vo vnútri. '''Spodný riadok''' – hviezda vybúcha ako supernova, vzniká silná rázová vlna, ktorá odhodí vonkajšie vrstvy rýchlosťou až 20 000 kilometrov za sekundu. Z jadra vznikne neutrónová hviezda.]]
Tlak, ktorý vďaka jadrovej syntéze vytvára hviezdne jadro spaľovaním vodíka na hélium, v niektorých prípadoch aj na ťažšie prvky, udržuje po niekoľko miliárd rokov hviezdu v gravitačnej rovnováhe. Pri ubúdaní prvkov v jadre hviezdy sa reakcie zrýchľujú, veľkosť a žiarenie hviezdy sa zvyšuje a jej životnosť sa začína krátiť. V prípade hviezd typu hlavnej postupnosti vrátane nášho Slnka, budú jej jadrové reakcie pokračovať do chvíle, kým sa v jadre minie zásoba vodíka a hélia-teda prvkov, ktoré hviezda potrebuje na priebeh fúzie. Keďže už nevie vytvoriť tlak, ktorý by smerom z jadra vzdoroval gravitačnému tlaku z vonkajška hviezdy, horná plynná vrstva sa odhodí v podobe planetárnej hmloviny a k jadru začnú prepadať tlaky, ktoré ho zmenšia na teleso, ktoré nazývamesa nazýva biely trpaslík. Na rozdiel od iných hviezd vo vesmíre, sú práve biely trpaslíci telesami, ktoré by vedeli ostať v gravitačnej rovnováhe nekonečne dlho, pretože ich náhodný pohyb častíc ''nezávisí'' na [[Teplota|teplote]] plynu v ich jadre. To teda znamená, že keď sa biely trpaslíci ochladzujú a vyžarujú termálnu energiu, nezmršťujú sa a nestrácajú ani oporu v tlaku. Tlak, ktorý gravitačne udržuje bielych trpaslíkov, sa nazýva ''degeneratívny tlak,'' ktorý zapríčiňuje kvantovo mechanický efekt- ''[[Pauliho vylučovací princíp]].'' Vylučovací princíp tvrdí, že dve rovnaké častice nemôžu mať rovnakú hybnosť a ani polohu zároveň<ref name=":0">{{Citácia knihy|priezvisko=Begelman, Rees|meno=Mithchell|titul=Osudová přitažlivost gravitace|vydavateľ=Argo|miesto=Martin|rok=2010|isbn=978-80-257-0806-4|strany=}}</ref>- zabraňuje tak [[Fermión|fermiónom]]- elementárnym časticiam známej hmoty- aby sa nachádzali blízko seba a aby mali súčasne rovnaké rýchlosti. Keď sa fermióny k sebe približujú, vylučovací princíp ich núti k veľkým rýchlostiam, ktorý odoláva silnému stláčaniu a vzniká tak degenerovaný plyn, ktorý udržuje bieleho trpaslíka v gravitačnej rovnováhe-hviezda sa môže stať bielym trpaslíkom, keď jej elektróny zdegenerujú a stlačia sa na [[Hustota (objemová hmotnosť)|hustotu]] miliónkrát vyššiu, ako je hustota [[Voda|vody]]. Keď sa hmotnosť bielych trpaslíkov zvyšuje, náhodné rýchlosti spôsobené degeneráciou sa zvyšujú spolu s touto veličinou a dosahujú rýchlosti blížiacich sa rýchlosti svetla. V roku [[1930]] si mladý indický teoretický fyzik [[Subrahmanyan Chandrasekhar]] uvedomil, že pri bielych trpaslíkov hmotnosti vyššej ako 1,4 násobok Slnka,<ref name=":0" /> neexistuje gravitačná rovnováha, pretože pri zvyšovaní rýchlosti [[Elektrón|elektrónov]] blížiacich sa [[Rýchlosť svetla|rýchlosti svetla]] oslabuje odolnosť degenerovaného plynu, schopnosť odolávať stláčaniu gravitácie. Vďaka tomu by sa biely trpaslík, s hmotnosťou presahujúcu [[Chandrasekharova medza|Chandrasekharovu medzu]] gravitačne zrútil za ani nie sekundu. Pri výbuchu supernovy, zväčša typu II alebo aj Ic či Ib, prepadnú k bielemu trpaslíkovi silné tlaky, ktoré začnú stláčať elektróny blízko [[Atómové jadro|atómového jadra]]. Tie pri silných tlakoch narazia do protónov, ktoré sa rozpadnú na ďalšie neutróny a prakticky celý priestor atómu vyplnia tieto častice, čo vedie k neuveriteľnej hustote, ktorá dosahuje vyššie hodnoty než 10<sup>14</sup> g/cm<sup>3</sup>. Z jadra začína vznikať pozostatok hviezdy, ktorý je prakticky tvorený len neutrónmi (''z toho aj názov neutrónová hviezda'').
 
== Fyzikálne vlastnosti ==
 
===== Gravitačné a magnetické pole =====
[[Súbor:Neutronstar 2Rs.svg|náhľad|''Gravitačná výchylka'' svetla na neutrónovej hviezde. Vďaka relativistickému vychýleniu svetla je viditeľná viac ako polovica povrchu.]]
Hoci si v laickej oblasti ľudia často zamieňajú tiaž a hmotnosť, v oblasti astrofyziky predstavujú tieto pojmy odlišné javy. Hmotnosť (fyzikálna značka <math>m</math>) je miera množstva hmoty, z ktorej objekt pozostáva. Hmotné teleso sa prejavuje v tom, že kladie odpor voči zmene svojho pohybového stavu (zotrvačnosť, zotrvačná hmotnosť) a že vzájomne pôsobí na ostatné hmotné telesá (gravitácia). Gravitačná hmotnosť je hmotnosť, ktorá je príčinou gravitácie- napríklad práve tiaž. Pomer gravitačnej a zotrvačnej hmotnosti je konštantný (pri správnej voľbe jednotiek je rovný 1). To znamená, že: ''gravitačná hmotnosť=zotrvačná hmotnosť=hmotnosť''. Tiaž (fyzikálne značky <small><math>F_G</math>, <math>G</math>, <math>Q</math></small>) je miera, ktorá udáva, koľko teleso váži v gravitačnom poli (na rozdiel od hmotnosti nie je nemenná). Teleso by vážilo na rôznych planétach a iných vesmírnych objektoch rôzne. Napríklad na Zemi by mohlo vážiť 75kg, pričom na Mesiaci len 12kg. Jeho hmotnosť sa však nezmenila (stále ho tvorí to isté množstvo hmoty, masy), ale zmenila sa veľkosť gravitačnej sily pôsobiaca na jeho hmotnosť-čím sa zmenila jeho tiaž. Čím je vesmírny objekt väčší, tým gravitácia silnejšie pôsobí na teleso. Keďže má ale väčší povrch, čím sa teleso nachádza ďalej od stredu planéty, tým aj ťah medzi ním a planétou úmerne klesá so štvorcom vzdialenosti. Rovnica bude vyzerať takto: <math>F \backsim \frac{Mm}{r^2}</math> (kde <small><math>F</math></small> reprezentuje <small><math>M</math></small> znamená hmotnosť planéty a <math>m</math> hmotnosť telesa [v kg], <math>r^2</math> je vzdialenosť od stredu planéty, ''pozn.'' hmotnosti sú v čitateľovi, pretože sila sa s narastajúcou hmotnosťou zväčšuje. Vzdialenosť je v menovateli, pretože sila sa zmenšuje, keď sa vzdialenosť zväčší). Jupiter, najväčšia planéta slnečnej sústavy, je 316-krát masívnejší ako Zem, no keďže je 11-násobkom polomeru Zeme, teleso sa bude nachádzať 11-krát ďalej od centra- nebude teda 316-krát ťažšie ako na Zemi (vzhľadom na faktor 11<sup>2</sup> sa bude povrchová gravitácia Jupitera pohybovať okolo 2.35 g) {{ref|a}} Keďže je ale neutrónová hviezda veľmi hmotná a zároveň veľmi malá (polomer okolo 10 km), teleso by sa nachádzalo veľmi blízko centra- dosiahlo by hmotnosť, ktorá by sa pohybovala v miliardových číslach.
 
Gravitačná sila priemernej neutrónovej hviezdy dosahuje vysoké hodnoty- gravitačné pole neutrónovej hviezdy je približne 20002 miliárd krát silnejšie ako má Zem.<ref>'''Green, Simon F.; Jones, Mark H.; Burnell, S. Jocelyn (2004)'''. ''An Introduction to the Sun and Stars''</ref> Z teórie relativity vyplýva, že objekt s veľmi silnou gravitáciou bude ohýbať svetelné lúče a vytvárať tak (gravitačnú) šošovku. To sa deje aj priPri neutrónovej hviezde, kde silné gravitačné pole ohýba vyžiarené fotóny emitované neutrónovou hviezdou tak, aby boli viditeľné časti bežne neviditeľného zadného povrchu.<ref>'''Zahn, Corvin (1990-10-09)'''. "Tempolimit Lichtgeschwindigkeit</ref> Ak je polomer neutrónovej hviezdy <math>3GM / c2</math> (kde GM znamená súčin gravitačnej konštanty a hmotnosti telesa, a c<sup>2</sup> znamená druhú mocninu rýchlosti svetla) alebo aj menej, fotóny môžu byť zachytené na obežnej dráhe, vďaka čomu sa zviditeľní celý povrch tejto neutrónovej hviezdy z jediného východného, pozorovaného bodu. Pri vystavení silnej gravitačnej sile, akú dosahuje neutrónová hviezda, by sa objekt ešte pred pádom na povrch takmer okamžite roztiahol na dlhý pás materiálu- jav (neodborne) nazývaný ako [[špagetizácia]].
 
===== '''Hustota a vnútorná štruktúra''' =====
Neutrónové hviezdy, ktorých magnetické pole dosahuje 10<sup>8</sup>-10<sup>11</sup> T (pre porovnanie – magnetické pole Zeme dosahuje len 0,0000305 [[Tesla (jednotka)|tesla]]) sú všeobecne známe ako magnetary, ktoré sa stali prijímanou hypotézou na vysvetlenie mäkkých gama opakovačov (SGR) a [[Anomálny röntgenový pulzar|anomálne röntgenové pulzary]] (AXP). Ich magnetické pole spôsobuje "rozpad" kôry neutrónovej hviezdy, pričom tento rozpad sprevádzajú krátke, mohutné svetelné záblesky žiarenia gama a uvoľňuje sa obrovské množstvo energie. Magnetar ''SGR 1806-20'' uvoľnil pri výbuchu, ktorý trval 1/10 sekundy, viac energie ako Slnko za posledných 100 000 rokov.<ref>{{Citácia elektronického dokumentu|titul=Neutron Stars, Pulsars, and Magnetars - Introduction|url=https://imagine.gsfc.nasa.gov/science/objects/neutron_stars1.html|vydavateľ=imagine.gsfc.nasa.gov|dátum prístupu=2021-06-20}}</ref> Magnetické pole magnetarov by už zo vzdialenosti 1000 km dokázalo deformovať elektrónové obaly atómov živej hmoty, čím by v dôsledku narušenia biochemických procesov zapríčinilo smrť živých organizmov. <ref>{{Citácia elektronického dokumentu|titul=Sky & Telescope|url=https://skyandtelescope.org/astronomy-news/powerful-magnetar-blast-from-another-galaxy/|dátum vydania=2005-11-18|dátum prístupu=2021-06-20|jazyk=en-US}}</ref> Vznik takého silného poľa je ešte stále nejasný, no jedná z hypotéz tvrdí, že počas tvorby neutrónovej hviezdy sa zachoval magnetický tok materskej hviezdy, čo malo za následok zosilnenie magnetického poľa vo výsledku procesu.<ref name=":3">Reisenegger, A. (2003). "Origin and Evolution of Neutron Star Magnetic Fields"</ref> Táto hypotéza však úplne nevysvetľuje intenzitu magnetického poľa neutrónových hviezd.<ref name=":3" /> Iné teórie vznik magnetického poľa vysvetľujú jednoducho ako gravitačné zrútenie hviezd s neobvykle silným magnetickým poľom vo vesmíre.
[[Súbor:Nuclear pasta.jpg|náhľad|280x280bod|Jadrové cestoviny predstavujú hypotetický typ degenerovanej hmoty, ktorá by sa mala vyskytovať v kôre neutrónovej hviezdy. V prvej fáze sa jadra zhustia do štruktúry, ktorá pripomína cestoviny gnochi- '''fáza gnochi'''. Gnochi sa ďalej roztiahnu na dlhé a tenké štruktúry hmoty- '''fáza špagety'''. Špagety sa potom spájajú do dlhých lisov, ktoré vyzerajú ako lazane- '''fáza lazane'''. Stláčaním lazaní sa vytvorí hustá forma hmoty s prerušovanými otvormi (na obrázku zobrazené písmenom '''e'''). Tie sa postupne zmenia na valcovité útvary'''-fáza antišpagiet'''- a nakoniec na sférické útvar-'''fáza antignochi.''' ]]
Zloženie a aj samotná štruktúra neutrónových hviezd predstavuje aj v súčasnosti veľký otáznik. Podrobnejší obraz fyzikálnej štruktúre a procesov, ktoré sa odohrávajú vnútri neutrónovej hviezdy, sme si vytvorili podľa presného štúdia zmien rýchlosti otáčania neutrónovej hviezdy, alebo (ako nám neskôr umožnili vesmírne röntgenové teleskopy) podľa priameho určenia súvislostí medzi hmotnosťou a jej polomerom pomocou merania vyžarovaného spektra z povrchu.<ref name=":0" /> Prierez neutrónovou hviezdou by vyzeral veľmi podobne ako rez štruktúrou Zeme, poprípade iných terestiálnych planét -začali by sme pevnou kôrou, až by sme nakoniec narazili na tekuté a husté jadro.<ref name=":0" /> Celková hustota neutrónových hviezd je približne 5,9 x 10<sup>17</sup> kg/m<sup>3</sup> (čo je 4,1 × 10<sup>14</sup> násobok hustoty Slnka), pričom hustota atómového jadra je 3 × 10<sup>17</sup> kg / m3. V kôre sa môže hmota spájať do zložitých štruktúr, ktoré pripomínajú rôzne druhy cestovín- jadrové cestoviny (z anglického originálu ''nuclear pasta'') predstavujú v oblasti astrofyziky a jadrovej fyziky hypotetický typ zdegenerovanej hmoty, ktorý by mohol byť najsilnejším materiálom vo vesmíre. "Cestovinová hmota" sa so stúpajúcim tlakom deformuje a vytvára zložitejšie štruktúry- tieto deformácie môžeme označiť za určité fázy (viz. obrázok). Vo vrchnej časti kôry sa jadra zhustia do pologuľovitých zbierok, ktoré svojím tvarom pripomínajú cestoviny ''gnochi''. V hlbších vrstvách kôry sa cestoviny gnochi v dôsledku elektrického odpudzovania protónov roztiahnu na dlhé pásy, obsahujúce tisícky nukleónov- táto fáza je známa ako ''fáza špagiet''. Špagety sa postupne spájajú a vytvárajú dlhé lisy jadrovej hmoty, ktoré svojimi rozmermi pripomínajú ''lazane''. Stláčanie lazaní vytvorí hmotu s prerušovanými otvormi, ktoré sa zmenia z valcovitých (''fáza "antišpagety"'') na sférické otvory (fáza ''"antignochi"'').
 
PodrobnéVonkajšia zloženiečasť a aj samotná štruktúra neutrónových hviezd predstavuje ešte stále veľký otáznik. Podrobnejší obraz o vnútri sme si vytvorili podľa presného štúdia zmien rýchlosti otáčania neutrónovej hviezdy, alebo (ako nám neskôr umožnili vesmírne röntgenové teleskopy) podľa priameho určenia súvislostí medzi hmotnosťou a jej polomerom pomocou merania vyžarovaného spektra z povrchu. Prierez neutrónovou hviezdoukôry by vyzeralmala veľmibyť podobnetvorená akozo rez štruktúrou Zeme-začali by sme plášťom, pokračovalo by tekuté vnútro a pravdepodobne aj pevné jadro.<ref name=":0" /> Celková hustota neutrónových hviezd je približne 5,9 x 10<sup>17</sup> kg/m<sup>3</sup>železa (4,1 × 10<sup>14</sup> násobok hustoty SlnkaFe), pričom hustota atómového jadra je 3 × 10<sup>17</sup> kg / m3. Vonkajší plášť by mal byť tvorený zo železa, ale pri čoraz vyšších hustotách, ktoré dosahujú hodnoty 6 × 10<sup>17</sup> kg/m<sup>3</sup>, by sa mali hlbšie vyskytovať neobyčajné jadra bohaté na neutróny-ku príkladunapr. jadrá z [[Nikel|niklu]] (Ni), [[kryptón|kryptónu]] (Kr) či [[Germánium|germánia]] (Ge)– ktoré by boli usporiadané v kryštalickej štruktúre.<ref name=":0" /> Hlboko pod plášťomvonkajšou časťou kôry hustota dosahuje až 10<sup>14</sup> gramov na centimeter kubický. ZaPri týchto podmienokpodmienkach sa hmota vyskytuje prevažne v podobe voľných neutrónov, ktoré vykazujú vlastnosti analogické tekutému héliu na Zemi pri teplotách blížiacich sa ku absolútnej nule. Na rozhraní kôry a jadra sa už jadrové cestoviny ďalej nevyskytujú. Priamo v jadre, kde je hustota niekoľko krát vyššia ako 10<sup>14</sup> g/cm<sup>3</sup> , platia stále neznáme fyzikálne mechanizmy. Predpokladá sa, že v jadre sa nachádza ten najhustejší materiál vo vesmíre, miliárd krát hustejší ako železo. Podľa iných, stále kontroverznejších variant,teórií sa v jadre nachádzajú tzv. ''podivné kvarkové hrudky,''- čo sú pevné látky zložené z neviazaných protónov, neutrónov a ďalších iných elementárnych častíc.<ref name=":0" />
 
==== Magnetické pole ====
Neutrónové hviezdy, ktorých magnetické pole dosahuje intenzitu '''10<sup>8</sup>-10<sup>11</sup>''' T (pre porovnanie – magnetické pole Zemena zemskom magnetickom rovníku dosahuje len '''0,000030500000305''' [[Tesla (jednotka)|tesla]'''0.305 x 10-4''' ] T) sú všeobecne známe ako [[Magnetar|magnetary]], ktoré sa stali prijímanou hypotézou na vysvetlenie mäkkých gama opakovačov (SGR) a [[Anomálny röntgenový pulzar|anomálne röntgenové pulzary]] (AXP). Ich magnetické pole spôsobuje "rozpad" kôry neutrónovej hviezdy, pričom tento rozpad sprevádzajú krátke, mohutné svetelné záblesky žiarenia gama a uvoľňuje sa obrovské množstvo energie. Magnetar(magnetar ''SGR 1806-20'' uvoľnil pripočas výbuchurozpadu kôry, ktorý trval <math>\tfrac{1/}{10}</math> sekundy, viac energie ako Slnko za posledných 100 000 rokov.<ref>{{Citácia elektronického dokumentu|titul=Neutron Stars, Pulsars, and Magnetars - Introduction|url=https://imagine.gsfc.nasa.gov/science/objects/neutron_stars1.html|vydavateľ=imagine.gsfc.nasa.gov|dátum prístupu=2021-06-20}}</ref> Magnetické pole magnetarov by už zo vzdialenosti 1000 km dokázalo deformovať elektrónové obaly atómov živej hmoty, čím by v dôsledku narušenia biochemických procesov zapríčinilo smrť živých organizmov). <ref>{{Citácia elektronického dokumentu|titul=Sky & Telescope|url=https://skyandtelescope.org/astronomy-news/powerful-magnetar-blast-from-another-galaxy/|dátum vydania=2005-11-18|dátum prístupu=2021-06-20|jazyk=en-US}}</ref> Vznik takého silného poľa je ešte stále nejasný, no jedná z hypotéz tvrdí, že počas tvorby neutrónovej hviezdy sa zachoval magnetický tok materskej hviezdy, čo malo za následok zosilnenie magnetického poľa vo výsledku procesu.<ref name=":3">Reisenegger, A. (2003). "Origin and Evolution of Neutron Star Magnetic Fields"</ref> Táto hypotéza však úplne nevysvetľuje intenzitu magnetického poľa neutrónových hviezd.<ref name=":3" /> Iné teórie vznik magnetického poľa vysvetľujú jednoducho ako gravitačné zrútenie hviezd s neobvykle silným magnetickým poľom vo vesmíre.
 
'''Teplota a hmotnosť'''
 
V súčasnosti vieme, že veľmi hmotné hviezdy v priebehu ich hviezdneho života môžu strácať malý zlomok svojej hmotnosti vďaka silným hviezdnym vetrom a preto hviezdy mierne ťažšie ako 1,4 násobok Slnka môžu pravdepodobne skončiť ako biely trpaslíci. Pre bieleho trpaslíka s hmotnosťou vyššou ako 1,4 násobok Slnka však gravitačná rovnováha neexistuje- minimálna hmotnosť neutrónovej hviezdy sa teda pohybuje v rozmedzí 1,4 násobku slnečnej hmotnosti až po hornú hranicu jej hmotnosti-''Oppenheimerova-Volkoffova medzu-,'' kde by gravitačný kolaps bieleho trpaslíka nevyhnutne pokračoval do vzniku [[Čierna diera|čiernej diery]]. Limit pre hornú hranicu hmotnosti neutrónových hviezd sa všeobecne pohybuje okolo 2,3 M☉, hoci podľa nedávnych objavov je to približne 2,4-2,5 M☉ slnečnej hmotnosti. Vychádza sa totiž z údaju, že hmotnosť väčšiny pozorovaných neutrónových hviezd je ''2,14M''☉. I keď sa predpokladá, že za hranicou 2,4 M☉ nastane gravitačný kolaps ďalej pokračujúci do vzniku čiernej diery, najmenšia hmotnosť pozorovaných čiernych dier je 5 M☉. Medzi 2,4M☉ a 5M☉ boli navrhnuté rôzne hypotetické hviezdy a objekty (napr. ''[[Kvarková hviezda|kvarkové hviezdy]])'' a hoci kandidáti existujú, stále sa ich existencia nepotvrdila. Teploty vo vnútri novovzniknutej neutrónovej hviezdy dosahujú okolo 10<sup>11</sup> do 10<sup>12</sup> K.<ref>Lattimer, James M. (2015). "Introduction to neutron stars". ''American Institute of Physics Conference Series''. AIP Conference Proceedings. '''1645''' (1</ref> V priebehu niekoľkých rokov však žiarenie prostredníctvom emitovania [[Neutríno|neutrín]] a [[Fotón|fotónov]] rapídne klesne zhruba na 10<sup>6</sup> K. Pri tejto prechádza žiarenie emitované neutrónovou hviezdou prevažne do röntgenovej oblasti elektromagnetického spektra, v ktorej žiari väčšina neutrónových hviezd v pozorovateľnom vesmíre.
 
===== Hustota a vnútorná štruktúra =====
[[Súbor:Neutron star cross-section.JPG|náhľad|254x254bod|Prierez neutrónovou hviezdou.]]
Podrobné zloženie a aj samotná štruktúra neutrónových hviezd predstavuje ešte stále veľký otáznik. Podrobnejší obraz o vnútri sme si vytvorili podľa presného štúdia zmien rýchlosti otáčania neutrónovej hviezdy, alebo (ako nám neskôr umožnili vesmírne röntgenové teleskopy) podľa priameho určenia súvislostí medzi hmotnosťou a jej polomerom pomocou merania vyžarovaného spektra z povrchu. Prierez neutrónovou hviezdou by vyzeral veľmi podobne ako rez štruktúrou Zeme-začali by sme plášťom, pokračovalo by tekuté vnútro a pravdepodobne aj pevné jadro.<ref name=":0" /> Celková hustota neutrónových hviezd je približne 5,9 x 10<sup>17</sup> kg/m<sup>3</sup> (4,1 × 10<sup>14</sup> násobok hustoty Slnka), pričom hustota atómového jadra je 3 × 10<sup>17</sup> kg / m3. Vonkajší plášť by mal byť tvorený zo železa, ale pri čoraz vyšších hustotách, ktoré dosahujú hodnoty 6 × 10<sup>17</sup> kg/m<sup>3</sup>, by sa mali hlbšie vyskytovať neobyčajné jadra bohaté na neutróny-ku príkladu jadrá z [[Nikel|niklu]], [[kryptón|kryptónu]] či [[Germánium|germánia]] – ktoré by boli usporiadané v kryštalickej štruktúre.<ref name=":0" /> Hlboko pod plášťom hustota dosahuje až 10<sup>14</sup> gramov na centimeter kubický. Za týchto podmienok sa hmota vyskytuje prevažne v podobe voľných neutrónov, ktoré vykazujú vlastnosti analogické tekutému héliu na Zemi pri teplotách blížiacich sa ku absolútnej nule. Priamo v jadre, kde je hustota niekoľko krát vyššia ako 10<sup>14</sup> g/cm<sup>3</sup> , platia neznáme fyzikálne mechanizmy. Predpokladá sa, že v jadre sa nachádza ten najhustejší materiál vo vesmíre, miliárd krát hustejší ako železo. Podľa iných, stále kontroverznejších variant, sa v jadre nachádzajú tzv. ''podivné kvarkové hrudky''-pevné látky zložené z neviazaných protónov, neutrónov a ďalších elementárnych častíc.<ref name=":0" />
 
== Binárne systémy ==
PribližneV 5%našej zogalaxii- Mliečnej ceste sa podľa dnešných odhadov nachádza až jedna všetkýchmiliarda neutrónových hviezd va našejpribližne galaxii5% z nich tvoria binárne systémy- systém dvoch astronomických objektov [zvyčajne hviezdy či planéty] ktoré obiehajú okolo ich spoločného ťažiska), kde druhújednu zložkuzo zložiek tvorí neutrónová hviezda. Súčasťou druhej zložky je zvyčajne biely trpaslík, čierna diera, červený obor, alebo aj ďalšia neutrónová hviezda. Dvojhviezdy, kde obe zložky obsahujú neutrónové hviezdy alebo neutrónovú hviezdu v binárnom systéme spolu s čiernou dierou, boli pozorované prostredníctvom gravitačných vĺn.
[[Súbor:15-137-CircinusX1-XRayLightRings-NeutronStar-Chandra-20150624.jpg|náhľad|230x230bod|[[Circinus X-1]] - röntgenový binárny systém, ktorý obsahuje neutrónovú hviezdu. ]]
'''Röntgenový binárny systém s nízkou hmotnosťou'''
Röntgenový binárny systém s nízkou hmotnosťou ('''LMXB'''-''Low-mass X-ray binary'') sú binárne systémy, kde jedna zložka je neutrónová hviezda alebo čierna diera, pričom druhá zložka (darca) je menej hmotným objektom-zvyčajne ide o plazmovú hviezdu (červený obor alebo biely trpaslík). LMXB systémy emitujú väčšinu svojho žiarenia prostredníctvom röntgenových lúčov, ktoré sú emitované horúcim plynom, ktorý sa prostredníctvom akrécie (akréčny disk okolo kompaktného objektu je najjasnejšou časťou LMXB<ref>''A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition)'' - Q. Z. Liu, J. van Paradijs, and E. P. J. van den Heuvel (str. 1) </ref>) dostáva z druhej zložky na povrch neutrónovej hviezdy, alebo začne rotovať okolo gravitačného pôsobenia čiernej diery. LMXB systémy patria medzi tie najjasnejšie objekty na röntgenovej oblohe, no približne menej ako jedno percento žiarenia je emitované vo viditeľných vlnových dĺžkach. V Mliečnej ceste bolo zistených približne dvesto takýchto binárnych systémov.
 
'''Medzihmotný röntgenový binárny systém'''
'''Medzihmotný röntgenový binárny systém''' Medzihmotný röntgenový binárny systém ('''IMXB'''-I''ntermediate-mass X-ray binary'') je binárny systém, ktorý pozostáva z neutrónovej hviezdy alebo čiernej diery a druhú zložku tvorí hviezda strednej hmotnosti (polovica hmotnosti Slnka). Sú pôvodom röntgenového systému s nízkou hmotnosťou.
 
'''Medzihmotný röntgenový binárny systém''' Medzihmotný röntgenový binárny systém ('''IMXB'''-I''ntermediate-mass X-ray binary'') je binárny systém, ktorý pozostáva z neutrónovej hviezdy alebo čiernej diery a druhú zložku tvorí hviezda strednej hmotnosti (polovica hmotnosti Slnka). Sú pôvodom röntgenového systému s nízkou hmotnosťou.
 
'''Vysoko-hmotný röntgenový binárny systém'''
51

úprav