Neutrónová hviezda: Rozdiel medzi revíziami

Pridaných 673 bajtov ,  pred 7 mesiacmi
Úprava úvodu, fyzikálne charakteristiky (budem v nich pokračovať).
d
Značky: manuálne vrátenie vizuálny editor odstránenie údržbovej šablóny
(Úprava úvodu, fyzikálne charakteristiky (budem v nich pokračovať).)
Značky: vizuálny editor odstránenie referencie
{{Pracuje sa}}
[[Súbor:MovingColliding heartneutron ofstars the Crab NebulaESA385307.jpg|náhľad|Neutrónová280x280bod|Simulácia hviezdakolízie vdvoch srdcihmotných [[Krabianeutrónových hmlovina|Krabej hmloviny]]hviezd. ]]
'''Neutrónová hviezda''' je vesmírny objekt s extrémnou hustotou, ktorý vznikne po výbuchu [[supernova|supernovy]]. Je to degenerovaná hviezda z neutrónového plynu a predstavuje záverečné štádium vývoja hmotných [[hviezda|hviezd]]-nadobrov, ktoré dosahujú približne 20 násobok hmotnosti Slnka. V ich vnútri dochádza k postupnej syntéze ľahších prvkov na ťažšie, po vzniku železa exploduje hviezda vo výbuchu supernovy a jej jadro je stlačené do neutrónovej hviezdy s extrémnou hustotou. Myslíme si, že na rozdiel od čiernych dier, či iných hypotetických objektov, ktoré ešte neboli experimentálne potvrdené alebo vyvrátené, sú práve neutrónové hviezdy tímy najmenšími a zároveň najhustejšími objektami vo vesmíre. Pozorované neutrónové hviezdy dosahujú na svojom povrchu približne 6 000 Kelvinov. Ich magnetické a gravitačné polia sú miliárd krát silnejšie ako má Zem. Hmotnosť neutrónových hviezdy je vždy väčšia, ako 1,4 [[hmotnosť Slnka|hmotnosti Slnka]], ale menšia, než 3 hmotnosti Slnka. Po prekročení 3-násobku hmotnosti Slnka (''Oppenheimerova-Volkoffova medza''), by gravitačný kolaps hviezdy pokračoval až do vzniku objektu s extrémne silnou gravitáciou – [[čierna diera|čiernej diery]].
 
Podľa súčasných dohadov sa v našej galaxii Mliečna cesta nachádza okolo 30 miliónov neutrónových hviezd, pričom približne 5% tvoria binárne systémy, kde jednou zo zložiek je neutrónová hviezda alebo čierna diera, pričom druhú zložku tvorí plazmová hviezda. Väčšina neutrónových hviezd je však veľmi starých a chladných- keďže žiaria veľmi málo, je ich veľmi ťažké detekovať. Od detekcie blízkej neutrónovej hviezdy [[RX J1856.5−3754|RX J185635-3754]] vďaka Hubbleovmu vesmírnemu teleskopu v 90. rokoch 20. storočia bolo detegovaných niekoľko blízkych neutrónových hviezd, ktoré zjavne emitujú iba tepelné žiarenie.
Hmotnosť neutrónových hviezdy je vždy väčšia, ako 1,4 [[hmotnosť Slnka|hmotnosti Slnka]], ale menšia, než 3 hmotnosti Slnka. Po prekročení 3-násobku hmotnosti Slnka ([[Oppenheimerova-Volkoffova medza]]), by gravitačný kolaps hviezdy pokračoval až do vzniku objektu s extrémne silnou gravitáciou – [[čierna diera|čiernej diery]].
 
Matematický predpoklad pre čierne a neutrónové hviezdy poskytol už v roku 1930 teoretický fyzik Subrahmanyan Chandrasekhar, neutrónové hviezdy boli však potvrdené až v roku 1967, kedy rádioastronómka Jocellyn Bell Burnelová spolu s Antony Hewisom zachytili rádiový signál od vzdialenej a izolovanej rotujúcej neutrónovej hviezdy-pulzaru ''PSR B1919+21''.
== Vznik ==
 
=== DegenerovanýFyzikálne tlakvlastnosti ===
Každá [[hviezda]] vo vesmíre spaľuje [[vodík]] pomocou [[Jadrová fúzia|jadrovej fúzie]] v jej jadru na [[hélium]], poprípade na ťažšie prvky, čím vzniká [[tlak]], ktorý bráni [[Gravitácia|gravitácii]] hviezdu stlačiť na jadro. Počas jej života sa jadrové reakcie v jadre zrýchľujú, hviezda sa vďaka ubúdaniu zásob ťažkých prvkov zväčšuje, začína viac žiariť a jej životnosť sa kráti. V jadre hviezd podobným nášmu Slnku sa spaľuje vodík na hélium pomocou základného jadrové cyklu známeho ako [[protón-protónový cyklus]]. Keď hviezde dôjde vodík, prejde na [[Fúzia|fúziu]] hélia a keď sa jej minie aj ten, svoju hornú plynnú vrstvu odhodí v podobe [[Planetárna hmlovina|planetárnej hmloviny]] a jej jadro sa zmenší na [[Biely trpaslík|bieleho trpaslíka]]. Biely trpaslíci sú druhmi hviezd, ktoré by vedeli ostať donekonečna v gravitačnej rovnováhe bez toho, aby potrebovali akýkoľvek zdroj energie či jadrovej reakcie.<ref name=":0">{{Citácia knihy|priezvisko=Begelman, Rees|meno=Mithchell|titul=Osudová přitažlivost gravitace|vydavateľ=Argo|miesto=Martin|rok=2010|isbn=978-80-257-0806-4|strany=334}}</ref> Na rozdiel od iných hviezd, ich náhodný pohyb častíc ''nezávisí'' na [[Teplota|teplote]] plynu v ich jadre, čo znamená, že keď sa biely trpaslíci ochladzujú a vyžarujú termálnu energiu, nezmršťujú sa a nestrácajú ani oporu tlaku. Druh tlaku, ktorý gravitačne udržuje biele trpaslíky, sa nazýva '''degenerativný tlak''' a vzniká pomocou kvantového mechanického efektu, známeho ako ''[[Pauliho vylučovací princíp]],'' ktorý tvrdí, že dve rovnaké častice nemôžu mať rovnakú hybnosť a ani polohu.<ref name=":0" /> Tento jav zabraňuje [[Fermión|fermiónom]] aby sa nachádzali blízko seba a súčasne mať rovnaké rýchlosti. Keď sa fermióny k sebe približujú, vylučovací princíp ich núti k veľkým rýchlostiam, ktorý odoláva silnému stláčaniu a vzniká degenerovaný plyn, ktorý udržuje bieleho trpaslíka v gravitačnej rovnováhe. Hviezda sa môže stať bielym trplaslíkom, keď jej elektróny zdegenerujú a stlačia sa na [[Hustota (objemová hmotnosť)|hustotu]] miliónkrát vyššiu, ako je hustota [[Voda|vody]].
 
===== Chandrasekharova medzaVznik =====
Tlak, ktorý vďaka jadrovej syntéze vytvára hviezdne jadro spaľovaním vodíka na hélium, v niektorých prípadoch aj na ťažšie prvky, udržuje po niekoľko miliárd rokov hviezdu v gravitačnej rovnováhe. Pri ubúdaní prvkov v jadre hviezdy sa reakcie zrýchľujú, veľkosť a žiarenie hviezdy sa zvyšuje a jej životnosť sa začína krátiť. V prípade hviezd typu hlavnej postupnosti vrátane nášho Slnka, budú jej jadrové reakcie pokračovať do chvíle, kým sa v jadre minie zásoba vodíka a hélia-teda prvkov, ktoré hviezda potrebuje na priebeh fúzie. Keďže už nevie vytvoriť tlak, ktorý by smerom z jadra vzdoroval gravitačnému tlaku z vonkajška hviezdy, horná plynná vrstva sa odhodí v podobe planetárnej hmloviny a k jadru začnú prepadať tlaky, ktoré ho zmenšia na teleso, ktoré nazývame biely trpaslík. Na rozdiel od iných hviezd vo vesmíre, sú práve biely trpaslíci telesami, ktoré by vedeli ostať v gravitačnej rovnováhe nekonečne dlho, pretože ich náhodný pohyb častíc ''nezávisí'' na [[Teplota|teplote]] plynu v ich jadre. To teda znamená, že keď sa biely trpaslíci ochladzujú a vyžarujú termálnu energiu, nezmršťujú sa a nestrácajú ani oporu v tlaku. Tlak, ktorý gravitačne udržuje bielych trpaslíkov, sa nazýva ''degenerativný tlak,'' ktorý zapríčiňuje kvantovo mechanický efekt- ''[[Pauliho vylučovací princíp]].'' Vylučovací princíp tvrdí, že dve rovnaké častice nemôžu mať rovnakú hybnosť a ani polohu zároveň<ref name=":0">{{Citácia knihy|priezvisko=Begelman, Rees|meno=Mithchell|titul=Osudová přitažlivost gravitace|vydavateľ=Argo|miesto=Martin|rok=2010|isbn=978-80-257-0806-4|strany=334}}</ref>- zabraňuje tak [[Fermión|fermiónom]]- elementárnym časticiam známej hmoty- aby sa nachádzali blízko seba a aby mali súčasne rovnaké rýchlosti. Keď sa fermióny k sebe približujú, vylučovací princíp ich núti k veľkým rýchlostiam, ktorý odoláva silnému stláčaniu a vzniká tak degenerovaný plyn, ktorý udržuje bieleho trpaslíka v gravitačnej rovnováhe-hviezda sa môže stať bielym trpaslíkom, keď jej elektróny zdegenerujú a stlačia sa na [[Hustota (objemová hmotnosť)|hustotu]] miliónkrát vyššiu, ako je hustota [[Voda|vody]]. Keď sa hmotnosť bielych trpaslíkov zvyšuje, náhodné rýchlosti spôsobené degeneráciou sa zvyšujú spolu s touto veličinou a dosahujú rýchlosti blížiacich sa rýchlosti svetla. V roku [[1930]] si mladý indický teoretický fyzik [[Subrahmanyan Chandrasekhar]] uvedomil, že pri bielych trpaslíkov hmotnosti vyššej ako 1,4 násobok Slnka,<ref name=":0" /> neexistuje gravitačná rovnováha, pretože pri zvyšovaní rýchlosti [[Elektrón|elektrónov]] blížiacich sa [[Rýchlosť svetla|rýchlosti svetla]] oslabuje odolnosť degenerovaného plynu, schopnosť odolávať stláčaniu gravitácie. Vďaka tomu by sa biely trpaslík, s hmotnosťou presahujúcu [[Chandrasekharova medza|Chandrasekharovu medzu]] gravitačne zrútil za ani nie sekundu. Pri výbuchu supernovy, zväčša typu II alebo aj Ic či Ib, prepadnú k bielemu trpaslíkovi silné tlaky, ktoré začnú stláčať elektróny blízko [[Atómové jadro|atómového jadra]]. Tie pri silných tlakoch narazia do protónov, ktoré sa rozpadnú na ďalšie neutróny a prakticky celý priestor atómu vyplnia tieto častice, čo vedie k neuveriteľnej hustote, ktorá dosahuje vyššie hodnoty než '''10<sup>14</sup> g/cm<sup>3</sup>.''' Z jadra začína vznikať pozostatok hviezdy, ktorý je prakticky tvorený neutrónmi (''z toho aj názov neutrónová hviezda'').
 
===== Vnútorná štruktúra =====
Keď sa hmotnosť bielych trpaslíkov zvyšuje, náhodné rýchlosti spôsobené degeneráciou sa zvyšujú tiež a dosahujú rýchlosti blížiacich sa rýchlosti svetla. V roku [[1930]] si mladý indický teoretický fyzik [[Subrahmanyan Chandrasekhar]] uvedomil, že pri bielych trpaslíkov hmotnosti vyššej ako 1,4 násobok Slnka,<ref name=":0" /> neexistuje gravitačná rovnováha, pretože pri zvyšovaní rýchlosti [[Elektrón|elektrónov]] blížiacich sa [[Rýchlosť svetla|rýchlosti svetla]] oslabuje odolnosť degenerovaného plynu, schopnosť odolávať stláčaniu gravitácie. Vďaka tomu by sa biely trpaslík, s hmotnosťou presahujúcu [[Chandrasekharova medza|Chandrasekharovu medzu]] gravitačne zrútil za ani nie sekundu. Pri výbuchu supernovy prepadnú k bielemu trpaslíkovi silné tlaky, ktoré začnú stláčať elektróny blízko [[Atómové jadro|atómového jadra]]. Tie pri silných tlakoch narazia do protónov, ktoré sa rozpadnú na ďalšie neutróny a prakticky celý priestor atómu vyplnia tieto častice, čo vedie k neuveriteľnej hustote, ktorá dosahuje vyššie hodnoty než '''10<sup>14</sup> g/cm<sup>3</sup>'''. {{chýba citácia}}
 
== Vnútorná štruktúra ==
''Súčasné pochopenie vnútornej štruktúry neutrónových hviezd je možné vďaka matematickým a fyzikálnym modelom, ktoré sa snažia aplikovať asteroizesmológiu, štúdium oscilácií vo hviezdach, na neutrónové hviezdy a analýzou pozorovaných spektier. Hoci sú tieto modely v mnohých prípadoch presné, nedá sa s istotou povedať, že naše pochopenie štruktúry neutrónových hviezd je správne a preto by sa nasledovné údaje mali brať s odstupom.''
[[Súbor:Neutron star cross section.svg|náhľad|Hypotetický prierez neutrónovou hviezdou. ]]
Často sme predpokladali, že stavba neutrónovej hviezdy je jednoduchá: povrch tvorí pevná kôra a vnútri sa nachádza tekuté jadro. Avšak podľa nových výskumov a matematicko-fyzikálnych modelov predpokladáme, že stavba bude o čosi zložitejšia. Súčasné modely nám naznačujú, že [[hmota]] na povrchu neutrónových hviezd sa pravdepodobne skladá len z obyčajných atómových jadier s morom elektrónov, ktoré prenikajú medzerami medzi nimi. Všeobecne sa predpokladá, že dynamika atmosféry neutrónovej hviezdy je riadená jej silným [[Magnetické pole|magnetickým poľom]]. Pod atmosférou sa nachádza pevná "kôra" hviezdy, ktorá je extrémne tvrdá a veľmi hladká-maximálne nepravidelnosti dosahujú 5 [[Milimeter|mm]].<ref name=":1">{{Citácia knihy
| priezvisko = Haensel
| strany =
| jazyk =
}}</ref> Čím viac sa postupuje do vnútra, tým väčšie a väčšie tlaky tam narastajú.<ref name=":1" /> Takéto jadrá by sa už na [[Zem|Zemi]] dávno rozpadli, no vďaka silným tlakom sú stabilné. V tých najnižších vrstvách neutrónovej hviezdy sa jadrá zmenšujú (gravitácia a tlak prevládajú silnú silu) a dosahujeme bod, kde sú prakticky len samé [[Neutrón|neutróny]]. Od tohto bodu sa (pre nás) známa hmota správa podľa modelov veľmi zvláštne- vedci jej tvar a správanie často priraďujú k [[Cestovina|cestovinám]] (od toho aj názov '''nukleárne cestoviny''').<ref name=":1" /> V samom srdci neutrónovej hviezdy sa podľa výpočtov nachádza ten najhustejší materiál, ktorý je miliárd krát hustejší ako [[železo]]. Zloženie takejto hmoty je však ešte stále neisté. Niektorý vedci preto preto predpokladajú, že môže ísť o zvláštnu exotickú hmotu, ktorá môže obsahovať aj neznáme častice a vykazuje odlišné fyzikálne správanie od bežnej hmoty, to sú však len hrubé domnienky.<ref name=":1" />
 
== Typy neutrónových hviezd ==
51

úprav