Hausdorffova miera

Hausdorffova miera alebo Hausdorffova dimenzia alebo Hausdorffova-Besicovitchova dimenzia je, v matematike, nezáporné reálne číslo priradené nejakému metrickému priestoru. Hausdorffova miera generalizuje predstavu priestoru ako skutočného vektorového priestoru. Hausdorffova miera v v Euklidovskom priestore v jednom bode je nula, miera riadku je jedna ... miera fraktálu nadobúda číslo s desatinnými hodnotami. Existuje veľa priestorov, pre ktoré môže byť miera prirodzené číslo, ale tiež môže byť racionálne alebo iracionálne číslo. Táto koncepcia bola predstavená v roku 1918, matematikom Felixom Hausdorffom.

Hausdorffova miera (ďalej označená ) je "dolnodimenzionalnou" mierou na , ktorá nám dovoľuje merať isté „veľmi malé“ podmnožiny . Základnou myšlienkou je, že množina je "s-dimenzionálna" podmnožina množiny , kde platí , i keď je veľmi komplikovaná. je definovaná ako výraz, ktorý obsahuje súčet priemerov dobrého mnohopočtného pokrytia.

Definícia Hausdorffovej mieryUpraviť

Definícia: Nech   definujeme:

 

kde

 

túto

 

je obyčajná gamma funkcia.

 Pro   a   s vlastnosťami ako vyššie, definujeme:

    nazývame s-dimenzionálnou Hausdorffovou mierou na  .

Elementárne vlastnosti Hausdorffovej dimenzieUpraviť

  je Borelova regulárna miera pre  , nie je ale Radonova miera.

Z toho vyplýva toto:

  je miera.

  je miera.

  je Borelova miera.

Ďalšie zaujímavé vlastnosti:

  je čítacia miera.

  na  , kde   je Lebesgueova miera.

  na   pre všetky  .

  pre všetky  .

  pre všetky afinné izometrie  .

LiteratúraUpraviť

  • Steven G. Krantz: Measure Theory and Fine Properties of Functions, CRC Press LLC, London 2000, ISBN 0-8493-7157-0.