Gödelova veta o neúplnosti

Gödelova veta o neúplnosti je matematická veta.

V roku 1931 Kurt Gödel dokázal tzv. vetu o neúplnosti, ktorá odhalila hranice Hilbertovho programu.

Je to jedna z najvýznamnejších viet základného matematického výskumu. Z filozofického hľadiska je to rozhodujúca veta o podstate matematiky.

FormuláciaUpraviť

Vetu o neúplnosti možno formulovať takto:

  • V každom bezospornom formálnom systéme, ktorý obsahuje aspoň aritmetiku prirodzených čísiel (a tým aj svoju matematematiku), existujú výrazy (formalizované výroky), ktoré sa – a ani ich negácie – nedajú odvodiť v rámci výrokového počtu.
  • Každý výrokový počet vyššieho ako prvého rádu je v uvedenom zmysle neúplný, nie všetky dôsledky výrokového počtu možno odvodiť z ľubovoľne zvolených axióm pomocou konečného počtu krokov (algoritmus).

To by mohlo svedčiť o nekonečnosti významových útvarov.

Preto nemožno matematiku ani ako celok, ani v jej podstatných častiach chápať ako uzavretý kalkul. Predovšetkým to znamená, že nemožno súčasne potvrdiť úplnosť a bezospornosť výrazovo dostatočne bohatej matematickej oblasti.

V uvedenom zmysle je buď bezosporná a potom neúplná, alebo úplná a potom protirečivá. Keďže sa nemožno zrieknuť bezospornosti, treba sa zrieknuť úplnosti.

To znamená, že vo výrazovo dostatočne bohatej matematickej oblasti síce možno v dostatočne obsiahlom logickom jazyku vety formulovať, ale ich nemožno odvodiť.

Gödelova veta navždy odstránila predstavu o matematike (alebo aj jej častiach) ako úplnej, navždy uzavretej vede.

LiteratúraUpraviť

  • Smullyan, Raymond (2003) (po česky), Navěky nerozhodnuto : úvod do logiky a zábavný průvodce ke Gödelovým objevům (1 vyd.), Praha: Academia, ISBN 80-200-1068-8 

Externé odkazyUpraviť

  • FILIT Zdroj z ktorého (pôvodne) čerpal tento článok