Lagrangeova veta o strednej hodnote

Lagrangeova veta (o strednej hodnote) alebo Veta o strednej hodnote diferenciálneho počtu alebo Lagrangeova veta o prírastku funkcie (pomenovaná podľa Josepha Louisa Lagrangea) je veta v diferenciálnom počte.

Znenie vety[1]Upraviť

Nech   je funkcia taká, že

  1. f je spojitá na <a,b>,
  2. f má v každom bode intervalu (a,b) vlastnú alebo nevlastnú deriváciu.

Potom existuje bod   taký, že pre prvú deriváciu funkcie f v bode c platí

 

Dôkaz[1]Upraviť

Nech   je funkcia definovaná ako

 

Kde   je konštanta, ktorú zvolíme tak, aby sme mohli použiť Rollovu vetu o strednej hodnote. Teda dostávame

 

Funkcia F(x) na intervale <a,b> vyhovuje predpokladom Rollovej vety o strednej hodnote, čo znamená, že existuje bod   taký, že platí  . Derivujeme   podla  

 

vyčíslime v bode  

 

a teda

 

ReferencieUpraviť

  1. a b Neubrunn, T., Vencko, J.: Matematická analýza I. Univerzita Komenského v Bratislave, 1992.

Pozri ajUpraviť