Portál:Fyzika/Odporúčaný článok/18

Gromovove-Wittenove invarianty (GW) sú v matematike (konkrétne v sympletickej topológii a algebraickej geometrii) racionálne čísla, ktoré za istých situácií počítajú pseudohomologické krivky spĺňajúce predpísané podmienky za danej sympletickej rozmanitosti. GW invarianty môžu byť zhrnuté ako homologická alebo kohomologická trieda vo vhodnom priestore, alebo ako deformovaný združený (cup) výsledok kvantovej kohomológie. Tieto invarianty sa používajú na rozlíšenie sympletických rozmanitostí, ktoré boli predtým nerozlíšiteľné. Hrajú taktiež zásadnú úlohu v uzavretom type teórie strún IIA. Sú pomenované po Michailovi Gromovovi a Edwardovi Wittenovi.

Rigorózna matematická definícia Gromovových-Wittenových invariantov je zdĺhavá a zložitá a tak bude predmetom samostatného článku s názvom stabilná mapa. Tento článok sa pokúsi o viac intuitívne vysvetlenie toho čo invarianty sú, ako sa počítajú a prečo sú dôležité.

Aplikácia vo fyzike

upraviť

Gromovove-Wittenove invarianty sú so záujmom prijímané v teórii strún, odvetví fyziky, ktoré sa pokúša zjednotiť všeobecnú relativitu a kvantovú mechaniku. Podľa tejto teórie, všetko vo vesmíre, počínajúc elementárnymi časticami, je vytvorené z drobných strún. Ako struna cestuje v časopriestore, sleduje povrch, zvaný strunová schránka sveta. Žiaľ moduli priestor takýchto parametrizovaných povrchov, prinajmenšom a priori má nekonečnú veľkosť; nie je známe žiadne vhodné meradlo tohto priestoru a tak integrály ciest teórie nemajú rigoróznu definíciu.

Situácia sa zlepší vo variáciách známych ako uzatvorený A model topologickej teórie strún. Tu je šesť časopriestorových rozmerov, ktoré ustanovujú sympletickú rozmanitosť a ukazuje sa, že svetové obálky sú nevyhnutne parametrizované pseudohomologickými krivkami, ktorých moduli priestory majú len konečné dimenzie. Gromov-Wittenove invarianty, ako integrály nad týmito moduli priestormi, sú potom integrálmi ciest tejto teórie. Obzvlášť, voľná energia A modelu pri géne   je generujúcou funkciou génu   Gromov-Wittenových invariantov.