Priestorový uhol je časť priestoru vymedzená rotačnou kužeľovou plochou. Každá taká plocha delí priestor na práve dve časti – priestorové uhly. Priestorový uhol sa určuje tak, že sa uvažuje guľová plocha so stredom vo vrchole V a s ľubovoľným polomerom r, ktorej prienik s priestorovým uhlom je vrchlík na guľovej ploche s obsahom A. Veľkosť priestorového uhla potom určuje pomer medzi A a r2, pričom nezávisí na uvažovanej guľovej ploche.[1][2][3][4]

Vymedzenie priestorového uhla na guľovej ploche

Alternatívnou definíciou priestorového úhlu je zjednotenie všetkých polopriamok so spoločným začiatkom V, kde bod X leží na guľovom vrchlíku so stredom v bode V.[5][6][7]

Špecifickým prípadom priestorového uhla je polpriestor, tj. časť priestoru rozdeleného rovinou.

Značenie

upraviť

Výpočet

upraviť

Priestorový uhol objektu pozorovaného z určitého bodu je rovný ploche, ktorú zaberá obraz tohto objektu v bodovej projekcii (so stredom v danom bode) na jednotkovú guľu, ktorá má stred v danom bode.

Plný priestorový uhol má hodnotu  , priamy uhol polovičnú.

Element priestorového uhla

upraviť

Ak pozorujeme z určitého bodu s polohovým vektorom   element plochy  , ktorého polohový vektor je  , potom pre element priestorového uhla platí

 ,

kde  ,   je veľkosť tohto vektoru a  , pričom   je normála plochy v bode  .[8][9]

Referencie

upraviť
  1. ROSSIOVÁ DELL'ACQUA, Alba. Encyklopedie matematiky. 1. vyd. Praha : Mladá fronta, 1988. S. 260.
  2. Encyklopedický institut ČSAV. Malá československá encyklopedie. 1. vyd. Zväzok V. Pom–S. Praha : Academia, 1987. S. 123.
  3. KLEZCEK, Josip. Velká encyklopedie vesmíru. 1. vyd. Praha : Academia, 2002. ISBN 80-200-0906-X. S. 388.
  4. J. FECENKO - Ľ. PINDA. Matematika 1. Bratislava: Vydavateľstvo technickej a ekonomickej literatúry, 2006, [cit. 2006-09-03]. ISBN 80-8078-091-9.
  5. LOŠŤÁK, Jiří. Matematika do kapsy. 2. vyd. Olomouc : FIN, 1993. ISBN 80-85572-47-8. S. 123–124.
  6. Encyklopedický dům. Encyklopedický slovník. 1. vyd. Praha : Odeon & Encyklopedický dům, 1993. ISBN 80-207-0438-8. S. 1143.
  7. Diderot. Všeobecná encyklopedie Diderot v osmi svazcích. 2. nezměněné. vyd. Zväzok 8. T–Ž. Praha : DIDEROT, 2002. ISBN 80-86613-08-9. S. 177.
  8. P. HORÁK - Ľ. NIEPEL. Prehľad matematiky. Bratislava: Vydavateľstvo technickej a ekonomickej literatúry, 1982, [cit. 1982-09-03].
  9. M. BILLICH - M. TRENKLER. Zbierka úloh z geometrie. Ružomberok: Pedagogická fakulta Katolíckej univerzity, 2013, [cit. 2013-09-03]. ISBN 978-80-561-0058-5.

Pozri aj

upraviť

Tento článok je čiastočný alebo úplný preklad článku Prostorový úhel na českej Wikipédii.